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Abstract A study is made in the anisotropic biquadratic spin-1 Hamiltonian introduced 
by Batchelor n al. This model can be represented as a sum of operators satisfying 
a Rmperley-lieb algebra. Its critical behaviour is explored by using the relations 
behueen mass-gap amplitudes and critical exponents predicted by conformal invariance. 
The model, like in the X X Z  chain, is found to exhibit a line of continuously valying 
exponents. By comparing its eigcnspeetrum with that of the X X Z  Hamiltonian, several 
eract values are predicted. 

1. Introduction 

The Yang-Baxter equations (YBE) play a central role in ZD exactly integrable models 
in statistical mechanics and conformal field theory. In the case of statistical mechanics 
these equations appear as conditions on the Boltzmann weights which ensure exact 
integrability [l]. In many cases these YBE solutions are consequences of the fact that 
the corresponding exactly integrable model can be expressed as a representation of 
special algebras like the Tkmperley-Lieb [3] and Hecke [4] algebras. Furthermore we 
expect that different representations of these algebras would correspond in principle 
to distinct exactly integrable models. 

The Q-states Potts models and the spin-f X X Z  chain are the best known exam- 
ples of different representations of the Tkmperley-Lieb algebras [3,1]. These two 
models correspond to representations with dimensions Q and 4 respectively. It has 
also been shown (51 that a spin-1 model with a single quadratic term, namely the 
spin-1 biquadratic chain, is also a nine-dimensional representation of the Tkmperley- 
Lieb algebra, like the 9-state Potts models. From an exact equivalence between the 
eigenspectrum of these two last models it was conjectured that like the 9-state Potts 
model this spin-1 chain is also non-critical (massive). 

More recently Batchelor et a1 [2] introduced the anisotropic biquadratic spin-1 
model which is the deformed version of the above spin-1 model and is also a nine- 
dimensional representation of the Rmperley-Lieb algebra. In this paper we calculate 
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the critical properties of this anisotropic model. As in the Xrrz model [6] we ob- 
tain, for a range of anisotropy values, critical behaviour with continuously varying 
exponents. Like most of the critical statistical mechanics models [7] this chain is also 
mnformally invariant in its massless regime. The conformal anomaly and anomalous 
dimensions of the underlying field theory will be calculated. These calculations will 
he done hy exploiting a set of important relations between these quantities and the 
eigenspectrum of the Hamiltonian with a finite number L of spins. These relations 
are consequences (see Cardy [7] for a review) of the conformal invariance of the 
infinite system at a critical point. The relevant relations, for our purposes, may he 
stated as follows. ’RI each primary operator 0,, with anomalous dimension I, and 
spin sa, in the operator algebra of the massless infinite chain, there exists a set of 
states of the quantum Hamiltonian, in a periodic chain of L sites, whose energies 
and momenta are given by 

E t I j ( L ) =  E , ( L ) + ~ r r c ( ~ , + j + j ’ ) L - ’ + o ( L - ’ )  ( l . l a )  

F C Alcaraz and A L Malveui 

and 

q y L )  =Za(s, + j - j ’ ) L - I  ( l . l b )  

where j, j‘ = 0 , 1 , 2 , .  . ., as L -+ CO. The ground-state energy of the finite chain is 

addition to these relations, conformal invariance also predicts [SI that, at criticality, 
the L-sites ground-state energy Eo( L) in a periodic chain should behave as 

denned hv -, I”\I, l? I T 1 and I.._ the ...- (mo&!-&pende~!) PS”S!B;! C !he ~cnnfi  v&dty. 

as Z -+ CO. Here c is the central charge of the conformal class governing the critical 
behaviour and e, is the hulk limit (Z -t ma) of the ground-state energy per particle. 

This paper is organized as follows. In section 2 we start hy defining the model 
and discussing its main properties. Our main results are presented in sections 2.1-2.4. 
The ground-state energy of the infinite system and the sound velocity are calculated 
in section 2.1 and 2.2, and in sections 2.3 and 2.4 we calculate the conformal anomaly 
and dimensions in the critical region of the model. The paper closes with a discussion 
and a summary of our results in section 3. 

2. The anisotropic biquadratic spin-1 antiferromagnetic chain 

This model in an L-sites chain is defined by the Hamiltonian [2] 
L 

Hbq(Xbq,  L ,  = H k , k t l ( A b q )  
k = 1  

where 

Hk,k+l(Xbq) = -(sksk+1)2 + sinh2(xbq) [s;s;+~ - (S;s;+l)’] 
- $sinh(Xbq) [(S;S;,, + S:S:+,)(S~,, - S i )  t HCj 

- Zsinh’ ( + A b q )  [(S;S;+, + S:S:,l)S;S&l + HC] 

(2.la) 

- $sinh(2Xbq) [S;S;,,(S;,, - S i ) ]  (2 . lb)  
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and Sk = ( S ; , S i , S i )  are the spin-1 SU(2) matrices, Abq is a coupling constant 
and periodic boundary conditions are assumed. At A,, = 0 the model reduces to the 
isotropic spin-1 biquadratic chain [5,9]. 

The main interesting feature of the above Hamiltonian [2,10] is the fact that 
like the Q-states Potts quantum chain and the spin-i XYZ chain, it can also be 
represented as a sum of operators 

U k s - [ H k , k + l ( A b q ) + l ]  k =  1,2,  ..., 
satisfying the Rmperley-Lieb algebra [3] 

U-; = PUk 

[U , ,  U,,] = 0 

'kUk+luk = 
Ilc - VI 2 2 

where 

sinh(3Abq) = 1 + 2 c o s h ( 2 A b , ) .  = Pbq = sinh(A,,) 

In the case of the spin-f XYZ chain 

where now (a", a y ,  a") are spin-f Pauli matrices and A = - cos(y,,,) is a coupling 
constant, we can write (for periodic boundaries), 

L 

H = ~ z ( Y = ~ z )  = ['k- f C o S ( 7 = z z ) ]  ( 2 . W  
k = 1  

where [3] 

satisfy the Rmperley-Lieb algebra given in (2.3) with 

P = P",, = 2 C O S ( Y Z I Z ) .  ( 2 . k )  

In the case of the Q-states Potts chain the Hamiltonian is also expressed as a sum of 
operators obeying (2.3) but with [1,3] 

PQ = &. (2.7) 
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The operators U, in these models, although satisfying the same algebra, have different 
dimensions. In the case of the spin-1 biquadratic model they are of dimension 9 and 
in t h e m  chain and Q-states Potts models their dimensions are 4 and 9, respectively. 
This fact was used by Barber and Batchelor [5 ]  in order to show that the model (2.1) 
with A,, = 0 is massive because in this case pbq = 4 = pQ=y has the same value 
as in the 9-states Potts model (massive) and both model are expressed hy Temperley- 
Lieb operators with same dimensions. The fact that the chain is critical for 

conjecture that the anisotropic spin-1 biquadratic model given in (2.1) is also critical 
for -2 < pb,  4 2. In the remainder of this paper we v e r e  this conjecture and the 
critical behaviour will be studied whenever it occurs. 

2.1. The ground-state energy in the bulk limit L-w 

Using the relations (2.2) and (2.6) we can write for periodic chains 

F C Alcaraz and A L Malveui 

-2 < p,,, < 2 ~ weii the Q-S*atm pore iiiode'& wh'i pQ < 2 (9 < ;j in&= 

where the symbol '=' means that the left and right sides can be expressed in terms 
of G!!erezt reprepsezticc?ns af the Thper!ey-Lkb s!gebri (7 \-'"I a h t  with the sime 
parameter p: 

p =  p,,, = 2cos(yszz) = Pb9 = 1 + 2cosh(2Xb,). (2.86) 

The number of eigenstates on the left of (2.80) is 3L while on the right side it is 2L. 
Furthermore, we should not expect, for finite chains, common eigenvalues between 
these two models with boundary conditions of toroidal nature like the periodic one, 
because in this case the lkmperley-Lieb operators U,; k = 1,2,. . . , L defined in 
(2.2) and (2.6) are not independent and should satisfy model-dependent constraints 
[Ill. As usual we do, nevertheless, expect these spectral differences, induced by 
the boundaries, to vanish as L - m and consequently we expect that the ground- 
state energy per particle e$ .. and .. of both models, in the thermodynamic limit 
( L  + ,),-are related by 

ez = e Z Z z  CO - ap - 1 (2.9) 

with p given by (2.86). The exactly-known bulk energy e z *  of the XXZ chain [6] 
gives us the conjectured asymptotic value which, for -2 g pbq = P,,, < 2, is 

(2.10) 
dx m 

*' A b9 ) = - 2 s i n 2 ( y z z z ) ~  cosh(xz)[cosh(2yZZIx) - cos(y,,,)] 

where Ab,  and y,,, are related by (2.86). In the case of non-toroidal boundary 
conditions both models in (2.80) will have common eigenvalues even at finite lattices. 
Dmcnciui LLOJ iias yrcvrvuary vcitttcu L ~ L W  L ~ C L .  

The Hamiltonians (2.1) an (2.6) are U(1)-invariant due to their commutation with 
the total spin operator Sf. Consequently their associated Hilbert spaces can 
he separated into block-disjoint sectors labelled by their total spin n = Sf = 
0, +I, *2, . . . . As observed by Batchelor et 01 [2] the model (2.1) has a larger 

-.&.LA,-- r.0, L _ _  :....-I____ *-:=-a .I.:" C",,. 
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invariance, namely U,(SU,). This invariance translates into a commutation of (2.1) 
with the operator ~f ' l ( - l ) i [Sf ]z .  In this paper we do  not explore this symmetry. 

It is important to  observe here that while the XXZ Hamiltonian is Hermitian for 
arbitrary values of Pa,, the related biquadratic model is Hermitian only for Pbq 2 3, 
being non-Hermitian otherwise. Nevertheless our numerical calculations show that 
independently of Ob, the ground-state energy is real and occurs in the sector n = 0 
due to the antiferromagnetic nature of (2.1). In order to check the validity of (2.10) 
we calculated numerically the eigenspectrum of (2.1) for several lattice sizes. Our 
results are shown in table 1. For 2 < L < 10 the energies were calculated by a direct 
diagonalization while for 10 < L < 16 the calculation was done hy an extension of 
the Lanczos method for non-Hermitian matrices [E]. 

2.2. The sound velociry 

A simple way to verify whether the Hamiltonian (2,l).is~cnti_ca! for -2 < < 2, like 
the XYZ chain, is to analyse its eigenspectrum. In the case of massless behaviour, 
conformal invariance is also expected and the finite-size corrections of the eigenspec- 
trum should be ruled by relations (1.1) and (1.2). In order to use these relations 
we should calculate the sound velocity. From (1.1) this constant, which is model- 
dependent, can be calculated from the difference between two consecutives energies 
e, and ez associated with the same conformal tower of a primary operator, i.e. 

L2 
27r AL = (ez - el)- 3 c .  (2.11) 

In table 2 we present the sequences A L  for some values of Pbq .  In column A 
(column B) e, and e2 are the lowest eigenenergies in the sector n = 0 (sector n = 1) 
having momentum 0 and 27r/L, respectively. The extrapolated results, obtained by 
using the VBS extrapolants 1131, are also shown in this table. Comparing these results 
with the exactly-known sound velocity of the Xk'Z chain [14,11] we are induced to 
state the conjecture 

T sin[cos-'(Pbq /2)] 
= cos-'(Pbq/2) 

(2.12) 

for the sound velocity of the Hamiltonian (2.1). In table 2 the conjectured results 
are also given. The agreement of the numerical estimatives with (2.12) is good for 
all values of -2 < pbq < 2, except close to pb,,= 2 which is probably due to the 
appearance of logarithmic corrections like occur in the XYz  chain around y,,, = 0 
(A,, = 2) WI. 
23. Conformal anomab 

The results of the last section and our overall numerical analysis clearly indicate that 
the anisotropic spin-1 model is critical for -2 < ob, < 2. From (1.2) the conformal 
anomaly cbq of the conformal theory governing the critical behaviour of the model 
can be calculated form the L + 00 limit of the finite-size sequence 

(2.13) 
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Table 1. Ground-state energy per particle of Hamiltonian (2.1). The conjectured results 
are given by (2.10). 

4 - 1.425 3905 -2.1753905 -2.375wOO -2.496964 1 

8 -1.3283474 -2.0403561 -2.2324713 -2.3504515 
10 - 1.317 6272 -2.025568 1 -2.2170502 -2.334536 7 
12 -1.311 8839 -2.017657 3 -2.2087607 -2.3260473 
14 -1.3084478 -2.0129288 -2.2038118 -2.3209841 
16 - 1.306 228 5 -2.W 878 7 -2.2M) 6204 -2.317 721 5 

Extrapolated -1.299036 -1.999992 -2.190307 -2.307207 

Exact -1.2990381 -2.wOwOO -2.1903183 -2.3072168 

6 -1.352 1676 -2.073309 8 - 2 . ~ 6 7 ~ ~  -2.3860545 

Table 2. Finite-size sequences of hr. for L = 2, 16 (see (2.11)). In the column A 
(column B) el and e l  are the lowest eigenenergies in the sector n = 0 (sector n = 1) 
of (2.1) having momentum 0 and 2 r / L .  respectively. The conjectured values are given 
by (2.12). 

pbq = 0.1 Pbq = 1.0 pbq = 1.5 

L A B A B A B 

4 2.04525 2.35648 2.54647 
6 2.05673 1.68546 2.491 10 1.93397 2.74196 2.04390 

in 2.061 14 1.92203 2.56233 2.33866 2.84127 2.53170 
12 2.06180 1.96453 2.57415 2.41440 2.85655 2.62594 
14 2.06219 1.99043 2.58108 2.46123 2.86501 2.68517 
16 2.06243 2.58546 2.87003 

Extrapotaled 2.063 2.064 2.598 2.579 2.879 2.876 

8 2.05985 1.84522 2.54002 2.20452 2.81099 2.36777 

Conjectured 2.063 19 2.598117 2.875 14 

where E,(Pbq,,L) is the ground-state energy of the periodic chain with L spins. 
Using the conjectured exact values of the bulk energy and sound velocity given by 
(2.10) and (2.12) we show these sequences in table 3 together with their estimated 
asymptotic values. 

The results of table 3 are somehow surpnsing. From the exstence of a critical 
behaviour in a range of anisotropy values we would expect cbq >, 1, but nevertheless 
constant for all the values of the anisotropy, as in the exactly integrable spin-S 
Heisenberg model (15,161. Furthermore we would guess the values cbq = 1 or 
cbq = $ for the conformal anomaly. The guess cbq = 1 would be due to the fact 
that like the xrlz chain ( c  = 1) the Hamiltonian can be represented as a sum of 
Rmperley-Lieb operators and the other guess c = is reiatea with the fact that for 
chains with the same length, the dimensionality of the associated Hilbert space of 
(2.1) is the same as that of the exactly integrable spin-1 Heisenberg chain ( c  = $) 
[15,16]. A similar result, with effective conformal anomaly changing with the coupling 
constant is also obtained in the spin-f XXZ Hamiltonian given by (2.5), when a special 
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lhble 3. Finitcaize sequences Eb,(L) (see (2.13)) and extrapolated values for the 
conformal anomaly C b p  ?he conjectured value8 are given by (2.201 

4 
6 
8 
10 
12 
14 

Ektrapolaled 

Conjecturcd 

2.97223 
2.81201 
2.75782 
2.73299 
2.71958 
2.71152 

2.68965 

2.68929 

2.24707 
2.121 16 
2.07953 
2.06065 
2.05050 
2.04442 

2.02769 

2.02768 

2.18719 
2.06286 
2.02166 
2.00294 
1.99287 
1.98682 

1.97014 

1.97013 

2.06288 1.96284 1.90973 
1.94005 1.83943 1.78530 
1.89862 1.79629 1.74056 
1.87952 1.82582 1.71852 

1.86279 1.80821 1.69738 

1.84462 1.78776 1.66260 

1.84464 1.73134 1.65749 

1.86911 1.76408 1.70569 

type of toroidal boundary condition (0 < '$,,, < 2 ~ )  

.;+1 f io;+, = e*+**' (U; Zk U:) utt1 = U; (2.14) 

is used [ll]. The effect of these boundaries in the spectrum of the X X Z  chain is 
to reduce the finite-size corrections producing the same corrections as a model with 
conformal anomaly 

(2.15) 

Consequently it may also happen that the same role played by the boundary con- 
dition (2.14) in the XYZ chain is played by the periodic boundary condition in the 
Hamiltonian (2.1). Moreover it can also be shown [17] that the X X Z  chain with 
Dzyaloshinsly-Moriya interactions and periodic ends is related to the x32 chain 
(2.5) with toroidal boundary conditions of the type (2.14). Consequently if we mea- 
sure the conformal anomaly for this last model we also obtain an effective conformal 
anomaly changing continuously with the coupling constant. In order to understand 
the results of table 3 we also calculated the eigenspectrum of our model (2.1) with 
the boundary. condition 

S ~ , , i s ~ + ,  =e*'"*(S;rtis,Y) St,, =s;. (2.16) 

Comparing the eigenspectra of the X X Z  chain (2.5) and the anisotropic spin-1 bi- 
quadratic model (2.1) with coupling constants related by (2.86) and boundary condi- 
tions given by (2.14) and (2.16) we verify that the ground-state energy of both models, 
for finite chain are identical whenever 

cos(!j'$rtz) = cos('$bq) + f . (2.17) 

Since the bulk energy e,,* and ebq should not depend on the boundary condition 
this result give us a strong argument in favour of the conjecture (2.10). It is also 
interesting to observe that the relation (2.17) between f'$,,, and mbq is the same as 
that between y,,, and A,, in (2.86). We cannot explain the reason why the ground- 
state energy of both model are equal, for finite chains, whenever conditions (2.86) 
and (2.16) holds, but the reason is certainly related with the fact that the constraints 



4542 

produced by these toroidal boundary conditions in the representations (2.2) and (2.6) 
of the Rmperley- Lieb algebra are the same, at least in a sector of the Hilbert space 
containing the ground state. The same type of exact relations for ground states was 
found previously between the Q-states Potts model and theXXZ chain [ll]. 

F C Alcaraz and A L Malvezzi 

Combining the results of (2.8), (2.15) and (2.17) we obtain the conjecture 

(2.18a) 

where 

cos(f&q) = cos(4bq) + (2.1%) 

for the effective conformal anomaly of the anisotropic spin-1 biquadratic model with 
boundary condition specified by the angle 4b9. We also do expect that the above 
relations are valid for arbitrary values of dbq even if, due to relation (2.17), it would 
imply complex values for +,,,. In particular the periodic model (c& = 0) will be 
related to an X X Z  chain with complex angle 

(2.19) 

which give us, from (2.18), the conformal anomaly 

These are the conjectured values presented in table 3, where we see a clear agreement 
with the estimated values. 

It is interesting to observe from (2.18) that by choosing in the biquadratic model 
4bq,= rr/6 we obtain cbq(Pbqr  n / 3 )  = 1 for arbitrary values of Ob,, like in the X X Z  
cham with periodic ends. This indicates that for this model the boundary condition 
(2.16) with +ss = a/3 plays the same role as the periodic boundary condition in usual 
models. In order to elaborate more on this point let us split the boundary angles 
+bq into two regions: (i) 0 < +bq < a/3 where Jbq = ia ,  2 h ( 3  + 6 / 2 )  > a > 0 
and (ii) bap > a/3 where qbq is real and grows from zero. While in region (i) 
the associated x.yZ chain will have a boundary condition (2.14) with complex values 
for +z=z, in region (ii) this angle will be real. It is simple to see that the XXz 
Hamiltonian (2.5) with boundary conditions specified by complex angles will lose 
its Hermiticity and complex eigenvalues are allowed in its eigenspectmm. On the 
other hand the Hamiltonian (2.1), although having a real trace, is non-Hermitian 
even for real values of the boundary angle 4bq. However our spectral calculations 
show us that no matter what the value of Pbq in region (ii) we always obtain a 
real spectrum, in contrast with region (i) where complex eigenvalues appear as the 
lattice size increases. This information tells us that the lowest value of the ground- 
state energy, compatible with a real spectrum, is obtained with the boundary angle 
@bq = n / 3 .  For boundary angles +bq > r / 3  the eigenspectra are real but the energy 
increases while for 4bq < a / 3  (including the periodic case), although the ground- 
state energy decreases, the eigenspectra are no longer completely real. Studying 
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numerically and analytically the eigenspectra of t h e m  Hamiltonian (2.5) we verified 
that a similar behaviour also occurs when we use complex angles in (2.14). The 
ground-state energy is real and decreases hut excited states with complex energy 
values occur. If we measure the effective conformal anomaly with these complex 
angles we obtain c > 1, like the Hamiltonian (2.1) with dbq < r/3. These facts 
indicate that we should consider the spin-1 biquadratic model in its massless regime 
-2 < pbq 6 2, being governed by a c = 1 conformal theory like the XXZ chain. 
The boundary condition (2.16) with dbq > r / 3  and dbq < r /3  produce dimensions 
related with conformal theories having c < 1 and c > 1, respectively 

2.4. Anomalow dimemiom 

The results of last section indicate that we should expect anomalous dimensions given 
by a Coulomb gas picture like in the XXZ chain (111- In the X X Z  chain with periodic 
ends, the dimensions appearing in the sector n = xi+, U: = O,*l, k2, .  . . , are 
given by [ l l ]  

L 

(2.21a) 

where 

2 
(2.216) A?,+ = s(n,&* 1 -) m 

xp = r - 722, 
2& 2 r  . 

Comparing the eigenspectm, for finite chains, of the biquadratic spin-1 model (2.1) 
and the XYZ chain (2.5), both models having periodic boundary conditions and 
anisotropy p = pbq = p,,,, we verify that although the ground-smte energy of both 
models are different many real energies associated with excited states are exactly 
equal. Labelling by n = E:=, S;(n = 0, *l, *2,. . . , L) the eigensectors of the 
biquadratic model and by n’ = E:=, af(n’ = O,f l , f2 , .  . . , f L / 2 )  those of the 
XXZ chain we can verify the following exact correspondences (i) If n is odd all the 
eigenenergies in the sector n‘ = (In1 + 1)/2 are present in sector n; (U) if n # 0 
and even all the eigenenergies in the sector n‘ = n/2 also occur in the sector n; (iii) 
if n = 0 or n = 1 all the eigenenergies in the sectors with ln‘l > In1 appear in the 
sector n, (iv) if In1 > 1 all the eigenenergies in the sector In’l 2 In1 appear in the 
sector n. These results imply, for example, that all the energies in the sector n’ # 0 
of the XYZ chain are also present in the eigenspectrum of the biquadratic model, 
when both models are subject to periodic boundary conditions. 

Using these exact correspondences, which we believe are valid even for L 3 m, 
and the relations (1.2), (2.2), (2.6) together with (2.21) we obtain in the sector 
n =  CL ,=1 Sf of the spin-1 biquadratic model the anomalous dimensions 

dnSm = ~ ~ 1 , ~  - xo.n/zr (2.224 
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where 

F C Alcarm and A L Malvezzi 

Inl+ 1 n odd + n’ = __ 
2 

(2.226) 

and and Cl are given by (2.21) and (2.19), respectively. As a numerical test for 
(2.22) we show in table 4 our numerical estimate for the dimension d, , , ,  obtained 
form the L - CO of the sequence 

(2.23) 

where El,o is the lowest eigenenergy in the sector n = 0 and Eo the ground- 
state energy of the L-sites chain. For the sake of comparison we also present our 
extrapolated results together with the conjectured values given by (2.22). Except 
around pb, = 2, where logarithmic corrections are expected [ll], the agreement 
is good. It is important to state here that the spin-1 biquadratic model should have 
other dimensions beyond these given by (2.22) because some of the higher energies in 
its spectrum (some of them complex) show no exact correspondence in the spectrum 
of the p e n o d i c X n  spectrum. Before closing this chapter we mention that when the 
lattice size L is an odd number all the eigenvalues of the X n  chain, including the 
ground-state sector n‘ = 0 are also present in the corresponding Hamiltonian (2.1) 
with p = Pa,  = p,,,. Consequently in this case the dimensions (2.22) should be 
replaced by those of t h e m  chain with an odd number of sites calculated in (11). 

lhblc 4. Finite-size sequences h l , o ( L )  (see (2.23)) and extrapolated values for Ihe 
dimension d l , o .  The conjectured values a n  given by (2.225) 

L f lbq = 0.1 f lbq = 0.5 Pbq = 1.5 

4 0.374 182 0.392321 0.442843 
6 0.359700 0.380086 0.440273 
8 0.354898 0.376058 0.440686 

10 0.352720 0.374236 0,441363 
12 0.351548 0.373258 0.441966 
14 0.350846 0.372671 0.442460 
16 0.350391 0.372292 0.442861 

Extrapotakd 0.34891 0.37106 0.44472 

Conjectured 0.348914 0.371060 0.445919 
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3. Conclusion and summary 

In this paper we have studied the anisotropic spin-1 biquadratric Hamiltonian (2.1) 
introduced by Batchelor et a1 [2]. This model, like the X X Z  chain, has a U(l) invari- 
ance and can also be represented as a sum of Temperley-Lieb operators. Comparing 
the eigenspectrum of both models we conclude that like the XYZ chain this model 
has a massless phase when -2 < pbq = 1 + 2cosh(2Xbq) 6 2 with continuously 
varying exponents. 

Exploiting the conformal invariance of the infinite system we calculate the con- 
formal anomaly and dimensions of the underlying field theory governing the critical 
behaviour of the model. We show that this theory has a conformal central charge 
c = 1, but unlike the X X Z  chain, the model with periodic boundary conditions shows 
an effective conformal anomaly which changes continuously with the coupling constant 
in the massless phase. This effect is the same as that appearing in the XXZ Hamil- 
tonian (2.5) when toroidal boundary conditions of the type (2.14) are imposed with +,,, complex The natural boundary condition, which gives c = 1 for -2 pas < 2, 
is the toroidal boundary condition (2.16) with +bq = r / 3 .  When we use +bq > r / 3  
we obtain c < 1 and real anomalous dimensions while +bq < n/3 ,  which includes the 
periodic case ( + b p  = 0), give us c > 1 and complex dimensions will also occur, these 
complex dimensions being related with oscillatory behaviour of correlation functions. 
These results illustrate the danger we are exposed to when drawing conclusions just 
from the analysis of the eigenspectrum of a Hamiltonian with periodic boundary con- 
dition. The proper analysis should be done by looking for the most general boundary 
condition compatible with the symmetry of the model. 

Several anomalous dimensions are derived by comparing the eigenspectrum of 
(2.1) with that of the X X Z .  These dimensions, in the periodic case, are the same as 
those appearing in the X X Z  chain (2.1) with a boundary condition (2.2) specified by 
a complex angle. 

Finally we would like to mention that the exact relationship between eigenenergies 
of t h e m  chain and of the Hamiltonian (2.1) is a clear indication in favour of the 
exact integrability of the last model. 
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